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Abstract— Anomaly detection in a communication network is 
a powerful tool for predicting faults, detecting network sabotage 
attempts and learning user profiles, for marketing purposes and 
quality of services improvements. In this article, we convert the 
unsupervised data mining learning problem into a supervised 
classification problem. We will propose three methods for creating 
an associative anomaly within a given commercial traffic data 
database and demonstrate how, using the Principle Component 
Analysis (PCA) algorithm, we can detect the network anomaly 
behavior and classify between a regular data stream and a data 
stream that deviates from a routine, at the IP network layer level. 
Although the PCA method was used in the past for the task of 
anomaly detection, there are very few examples where such tasks 
were performed on real traffic data that was collected and shared 
by a commercial company.  

The article presents three interesting innovations: The first 
one is the use of an up-to-date database produced by the users of 
an international communications company.  The dataset for the 
data mining algorithm retrieved from a data center which 
monitors and collects low-level network transportation log 
streams from all over the world.  The second innovation is the 
ability to enable the labeling of several types of anomalies, from 
untagged datasets, by organizing and prearranging the database. 
The third innovation is the abilities, not only to detect the anomaly 
but also, to coloring the anomaly type. I.e., identification, 
classification and labeling some forms of the abnormality. 

Keywords— Anomaly detection; PCA; Data Mining; 
Machine learning;  

I.  INTRODUCTION  

Anomaly detection which is based on Network traffic 
analysis tools are the foundation stones for network upgrades, 
protecting against cyber-attacks, and are a marketing tool for 
analyzing user profiles. Many heuristics can serve as starting 
points for filtering out data that flows at extremely high speeds. 
Analysis of network traffic is the most effective means of 
reducing search within the amount of information required for 
further analysis. Business companies use network traffic testing 
tools as the primary means of their solution architecture for 
intelligence and law enforcement bodies that monitor national 
internet services providers (ISP). It is also a significant focus on 
the solution concept of companies that offer optimization and 
advertising solutions based on network transportation. 
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Traffic anomaly detection has received a great deal of 
attention in the research literature. While there has been some 
work that leverages data structures to find heavy-hitters [[1],[2], 
most papers have utilized statistical-analysis techniques to 
detect outliers in traffic time series. Numerous methods have 
been evaluated, including wavelets [3], moving average 
variants, Fourier transforms [4],[5], Kalman filters [6], and 
PCA [7]. Early work in this area often analyzed data from a 
single link [3], whereas more recent papers have shown 
promising results by examining network-wide measurements 
[8]. With such a large body of work, it becomes increasingly 
important to be able to compare presented approaches. While 
there have been a few papers that analyzed a subset of the 
statistical-analysis techniques [4],[5], researchers have only 
very recently begun investigating how data-reduction 
technologies impact the ability to detect traffic anomalies [9]. 
Much in the same way that early papers on traffic anomaly 
detectors had a limited scope, this new line of work has 
analyzed the impact of only one form of data-reduction [10], on 
only one type of traffic anomaly [11], or analyzed data from a 
small number of links [12].  

We are focusing on unsupervised techniques for big cellular 
data set. Our observation vectors have 97 different parameters. 
In the literature, various strategies proposed for dimensionality 
reduction [13]. The actual dimensionality reduction methods 
can classify into two classes: Feature extraction and Feature 
selection.  Feature selection aims to seek optimally or 
suboptimal subsets of the original features [14], by preserving 
the main information carried by the collected complete data, to 
facilitate future analysis for high-dimensional problems. 
Another approach is the opposite approach, instead of reducing 
the dimensionality, Breiman [15] suggested to increase the 
dimensionality by adding many functions of the predictor 
variables. Two outstanding examples of work in this direction 
are the AmitGeman method [16] and support vector machines 
[17]. In feature extraction model [18], the original features in 
the measurement space initially transformed into a new 
dimension-reduced space via some specified transformation. 
Significant characteristics determined in the new axis.  

Viswanath et al. [19] used PCA to classify Facebook users 
as either “normal” or “anomalous” (user considered anomalous 
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if its behavior was tagged as such by Facebook). Other papers 
that applied PCA successfully for anomaly detection include 
[20],[21],[22],[23],[24]. 

The ability to enable the labeling of several types of 
anomalies, from untagged datasets presented in some other 
works such as[25]. In [25] the validation data is split into two 
sets, one set that represents nominal data, and the other that 
represents potentially anomalous data.  In some instances, 
benign anomalies may appear in the validation of nominally 
categorized data where there was no prior suspicion of them.  In 
our case, we are adding external knowledge such as 
geographical location or period which allows us to classify the 
data without mixing between anomalies and regular sets. 

Our study in this article identifies and evaluates three main 
challenges: (1) Identifying anomalies from logs of real network 
traffic. (2) Development of new statistical algorithms to identify 
anomalies that are adapted to the unique problem. (3) 
Verification of the quality of results by breaking the data into 
normal and the rest according to some parameter: cell 
congestion, time rather than statistical methods only. 

II. ANOMALY DETECTION TECHNICS 

The article deals with two main challenges: The first one is 
that there is no definition of what an anomaly is, no training sets 
for anomalies. In practice the data is unlabeled. The second 
challenge is handling big-data stream, off-line and certainly in 
an online situation is a complicated technological challenge. 
The techniques for identifying anomalies can be divided into 
two types: Techniques, which are unsupervised and assume that 
most of the database observations represent normal or normal 
cases. For example, cluster analysis techniques can be used to 
characterize typical representation. A representation that does 
not belong to any cluster defined as an anomaly. Supervised 
techniques in which database observations were pre-
categorized for "normal" or "abnormal" observations. In this 
case, computational learning methods can use for categorized 
training, which enables the classification of new observation 
that we have not encountered in the learning process. 

We will use the PCA method which trained on normal 
behavior and identifies deviations from this behavior. We are 
showing characteristics that best explain the normal behavior. 
PCA will do this by projecting on a base with a smaller or the 
same dimension on which we will perform statistical analyzes. 

Now we are going to explain the PCA model. The first 
principal component (PC) is defined to be the direction (unit 
vector) 𝑽𝟏 ∈ ℝ𝒑 in which the variance of x is maximal. The 

variance of x in direction v is given by the expression 𝒗𝑻𝜮𝒗. 

Therefore 𝑽𝟏 = 𝒂𝒓𝒈𝒎𝒂𝒙𝑽 ∈ℝ𝒑 ∈ 𝒗𝑻𝜮𝒗. The latter is the 

Rayleigh Quotient definition of the largest eigenvalue of a 
matrix, therefore 𝑽𝟏 is the leading eigenvector of 𝜮 and  𝝀𝟏 =
𝒗𝟏

𝑻𝜮𝒗𝟏  is the variance explained by 𝑽𝟏. The remaining PCs are 
defined in a similar way and together they form an orthonormal 
basis of ℝ𝒑. The sample PCs 𝒗̂𝟏,…, 𝒗̂𝒑 are the eigenvectors of 

the sample covariance matrix 𝜮̂ . Under various reasonable 
assumptions it was proven that the principal components 
𝑽𝟏, … , 𝑽𝒑 converge to the sample ones  𝒗̂𝟏,…, 𝒗̂𝒑[26], [27]. We 

assume that this is true in our case, and we justify it by the fact 

that we are in the “fixed p large n” regime, where the ratio p/n 
tends to 0. 

III. CREATING AN ANOMALY DATABASE 

This research deals with the study of traffic of a cellular 
communication network to discover anomaly based on traffic 
data. A cellular network contains many access points to the 
Internet. Designated routers serve as a bridge between the 
Internet and the cellular data flow. These routers regularly 
monitored so that the traffic information through them is 
centralized into an information center, allowing a holistic, 
international view of the behavior of network traffic. 

 

Figure 1:Block diagram to preserve data confidentiality 

Naturally, this information center (which based on the Log 
Center) generates significant data at the rate of tens of gigabytes 
per second. It should emphasize that the stream of information 
and information content is not constant and changes according 
to use. Therefore, we averaged each measured parameter, 
separately, in time units. Such as averaging over an hour of 
HTTP request size. Another problem we had to deal with was 
maintaining anonymity and confidentiality. The cellular 
networks traffic logs contain private user information. There is 
a need for log anonymization platform scalable for big-data. As 
a result, we defined a batch based anonymization tool. 

 

Figure 2: Data center architecture 

The database fields divided into three types: Anonymous 
fields- Those fields used as is; Fields that reveal user 
information- Those fields have been deleted; Fields that can be 
used but still have indirect information about the user and 
therefore have a low risk of user exposure. For those fields, we 
used at the beginning the well-known PBKDF2 anonymization 
algorithm. PBKDF2 is very secure and used for protecting 
password on almost every server. The drawback is that the 
algorithm is slow. It makes the anonymization process to be 
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prolonged. Therefore, currently, we are working with SHA-256 
due to resource constraints. It takes one minute to anonymize a 
log of 1 Gb while almost a day with PBKDF2. 

Our database includes fields of the complete set of 
transaction log records and their formats, but the transaction log 
fields in any specific geographical location depend on its local 
configuration.  HTTPS records contain data per connection, as 
transactions not identified. HTTPS and HTTP Tunneled 
transactions records include only fields that captured during 
their limited processing (e.g., timing, data amounts IP 
addresses, etc.) 

IV. EXPERIMENTS AND RESULTS 

This section describes our PCA model, methodology and 
software for detecting and coloring the traffic anomaly by 
manipulate the same database in three major ways. 

A. Time-period traffic analysis  

The first method for discovering anomaly based on different 
time-period traffic analysis. The information divided into three-
periods categories: Night\Early Morning, Morning and Evening 
from all geographical locations. The motivation was to examine 
whether traffic congestion can discover based on the 
assumption that each time profile has a unique pattern. Based 
on the observed time profile, we injected vector information 
belonging to other time profiles, and tried to discover them as 
an anomaly.  

Initially, the time profiles tested naively, and elementary 
statistical parameters such as mean and standard deviation were 
measured to characterize each period by mean and standard 
deviation of its bytes stream volume. Sample results presented 
in Table 1. 

Table 1: Elementary parameters from some data sets examples 

 

Table 1 demonstrates the fact that an attempt to classify 
periods via first and second order statistical characteristics does 
not allow proper classification. The average plus the variance 
of each period creates an overlap that does not allow sufficient 
separation. 

Since the naive method of detecting the anomaly of different 
time periods is not relevant, we used the PCA method to 
identify an anomaly in datasets gathered in one period and 
reached the system at a different time. 

 

Figure 3: Time-periods major PCs 

As a conclusion from Figure 3, the PC effect is negligibly 
starting from the fourth eigenvalue. Table 2 presents some of 
the eigenvectors components for each relevant eigenvalue and 
associates them to the original dataset components. 

Table 2: Eigenvectors and time-periods components association table 

 

To colored anomaly, compare to the Weekday Night Hours 
(WNH) dataset, we transformed all time-periods datasets into a 
new PCA space. We used the Normal State Transformation 
Matrix (NSTM), calculated by performing principal 
components analysis on the WNH dataset. We extracted the two 
independent eigenvectors and performed the projection of the 
datasets of all time-periods on a single shared two-dimensional 
graph (Figure 4). We received a reduction of the dimension of 
information from a space of 97 dimensions to a 2-dimensional 
space that allows us to present a point of view that represents 
the distribution in a state without anomaly (Night hours). 
Similarly, we carried out the information with Weekend hours, 
and Evening hours and these points were marked in Yellow and 
Red respectively.   
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Figure 4: Colored time-periods classes 

After transforming each time-period dataset, separately, by 
the NSTM, we figured, per time-period dataset, the average 
absolute value of projections, in the direction of each 
eigenvector, individually. The following graph (Figure 5) 
shows the average absolute values of the projection on each PC. 

 

 

Figure 5: Comparing average absolute values of time-periods  
projections on all PCs 

Significant PCs for Weekday Night hours (Blue color) in 
importance order: 1. PC1, 2. PC2, 3. PC3 

Significant PCs for Weekend hours (Orange color) in 
importance order: 1. PC56, 2. PC54, 3. PC55 

With PCA model and NSTM, we rotate the original dataset 
axis system so that the eigenvectors become the basis of the new 
axial system. The PC column in Table 3 indicates the sequence 
number of the most relevant eigenvectors which the dataset 
vectors projected on it (most relevant PC's are the PCs with the 
highest average absolute values after projections into the PC 
direction).  Our dataset eigenvectors are in dimension 97, 
meaning that each eigenvector has 97 components that can be 
interpret as eigenvector weights. In Table 3, the weight column 
presents the X highest eigenvector weights per PC. A projection 
toward a PC is a linear combination (inner product) between 
original dataset vectors and eigenvector weights. Therefore, the 
eigenvector weights can interpret as the importance of the 
dataset vectors components (before projection). The last 
column in Table 3 connects between the PCA space and the real 
dataset log components. It allows us to interpret more efficient 
our log data and to characterize the most relevant features that 
have the highest influence on the data transportation during 

different time-periods. 

When examining anomaly at different times of the week, it 
is easy to see that the distribution of the evening and morning 
hours is almost identical. But when compared to the weekend 
we got an extreme deviation, when in fact all significant PCs 
that belong to the "normal traffic" dataset are not substantial in 
the weekend traffic. The significant PC's for the weekend hours 
focused mainly on watching the video, and moreover, it was 
noticeable that most of the video views had been interrupted 
(indicating a traffic load). 

 

Table 3: Eigenvectors components weights interpretation 

 

B. Congestion traffic analysis 

Second data structure: classification by congestion fields. 
The database contains some columns describing the level of 
transportation load. That refers to three levels of the number of 
Bytes per second passing through the examined network 
junction.  0 - low load level, 1 - medium load level and 2 - high 
load level.   

After computing the PCA model on the low-level 
congestion dataset (level 0), sorting them and selecting the 3 
with the highest eigenvalues, we extracted the three 
independent eigenvectors (the ones that belong to the three 
highest eigenvalues) and performed the projection of the 
datasets of all levels on a single shared three-dimensional 
graph. If to be more precise, our 97x3 matrix operator 
transformed each vector that belongs to level 0 into a three-
dimensional vector and colored them as a blue dot in the graph. 
We received a reduction of the dimension of information from 
a space of 97 dimensions to a 3-dimensional space that allows 
us to present a point of view that represents the distribution in a 
state without anomaly. Similarly, we carried out the 
information with a congestion level 1, and a congestion level 2 
and these points were marked in purple and red respectively. 
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Since the base is three dimensions we could display the results 
in a 3D graph, and we obtained the following results: 

To colored anomaly, compare to the conjunction 0 dataset 
principle components (PCs), we transformed all conjunctions 
levels (0,1,2) into a new PCA space. We used the Normal State 
Transformation Matrix (NSTM), obtained by performing 
principal components analysis on the level 0 conjunction 
dataset. After transforming each conjunction level dataset, 
separately, by the NSTM, we calculated, per conjunction level 
dataset, the average absolute value of projections, in the 
direction of each eigenvector, separately. The following graph 
shows the average conjunction of the projection on each PC. 

 

Figure 6:Congestion Levels via PCA 

PC-s significant for conj1 (Level 0 - Blue color) in importance 
order: 1. PC17, 2. PC41, 3. PC38. PC-s are significant for conj2 
(Level 1 - Orange color) in importance order: 1. PC41, 2. PC38, 
3. PC32 

 

Figure 7: Comparing average absolute values of congestion 
projections on all PCs. 

The PCA method allows us to distinguish between different 
conjunctions levels by performing a linear transformation of a 
new incoming measurement vector to the trained PC's space. If 
the new vector components (after transformation) will present 

in its component 41, 28 and 32 values which are significantly 
higher compare to its other components, then we know that 
there is an abnormal state and the reason for the anomaly is that 
we have moved from level 0 to congestion level 1. 

It is important to emphasize that the level of congestion does 
not represent a single parameter whose value has exceeded a 
specific threshold value, that can interpret as a sole conjunction 
criterion. The conjunction criteria is a linear combination of 97 
different measurements (components), each of which can be at 
its normal values range. Only the linear combination indicates 
an increase in the level of congestion. Therefore, a naïve and 
manual attempt to detected and recognize an anomaly in a 
vector of 97 dimensions is in the range of difficult to the point 
of impossible. The PCA method allows us to lower the vector 
dimension and also introduces interpretation that can detect and 
recognize congestion anomalies in low-level network 
transportation. 

C. Geographical traffic analysis 

The third data structure deals with geographical location. 
Routers that spread all over the world collected data stream flow 
from anonymous internet domains (150 different domains - one 
column per domain, each line is one hour aggregated bytes 
flow). Those datasets contain three months transportation log 
data. It divided into three continents groups: Africa, North 
America, and South America. The aim was to reveal 
information coming from one mainland within another 
mainland (for example, learning about the African continent, 
injecting vectors from the North American continent, and 
coloring such vectors as anomalies). 

Remark: The original database was 97 dimensions and at a 
size that required analysis with big-data tools such as SPARC 
and HADOOP. One of the ways to reduce big-data is the use of 
preliminary network traffic expert knowledge. Therefore, based 
on the expert's guidance, which explained that hour resolution 
and domains transportation load is enough to detect a 
geographic anomaly, we performed preliminary processing on 
the original 97-dimensional database. Instead of doing machine 
learning with heavy-duty distributed cloud processing power, 
we conducted pre-processing utility that reduced the data into 
several tens of gigabytes without compromising the quality and 
ability to detect and classify anomalies. We extracted only 
columns with domain loads (The domain names converted to 
symbols for to preserve user confidentiality). Additionally, we 
reduced our dataset from 97 to 10 dimensions by selecting the 
top ten domains (classified by traffic average) on each of the 
three continents. 

Figure 8 expose the common variance between African 
samples (X-axis) and North American samples (Y-axis) as 
obtained by the Canonical Component Analysis (CCA) 
operation. (The correlation coefficient is 0.82). It can 
understand that there is a great deal of commonality between 
the two sources of information and therefore we cannot expect 
to identify anomaly naively (as it presented with time-periods 
or conjunctions level). 
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Figure 8: Canonical Component Analysis (CCA) between Africa 
and North America, correlation = 0.82 

 

Figure 9:  CCA of N. America vs. S. America, correlation = 0.72 

 

Figure 10: CCA plot of Africa vs. S.America, correlation = 0.93 

The attempt to use the method used for time-period and 
congestion level, in a way that each class has other PCs that 
describe the specific type is inappropriate for the geographical 
case because here there is a strong correlation between the 
different PCs (see Figure 8, Figure 9, Figure 10). So, in the 
geographical situation, we look at the visual graph form, 
obtained after the projection. It can see that in the PC space each 
geographic region is placed elsewhere in the graph. And 
therefore, it is possible to perform separation using a linear 
regression line in the PC domain as a threshold between the 
different locations. 

 

Figure 11: PCS that trained on N. America domains Explained 
variance: PC1=84%, PC2=13% 

The geographical dataset is an example of analyzing 
different utilization mixtures with different locations and the 
ability to detect context (geographical) according to its pattern 
in the PCA space. 

In Figure 11 PCs trained on N. America data as normal 
dataset. We found in the training set that two eigenvalues can 
explain most of the variance (Explained variance for PC1 is  
84% and for PC2 is 13%).  Of the two eigenvectors belonging 
to the most explanatory eigenvalues (above eigenvalues), we 
extracted the eigenvectors components with the highest 
weights. The domains that multiplied during the PCA 
transformation with those most upper weights are the most 
dominant domain in the North American continent -  Domains 
marked as 0, 1 and 2 were dominant in the North American 
continent. 

In addition to extracting the 150 dominant domains, the pre-
processing utility allows us to produce another query on the 
geographical dataset. It enabled the extraction of traffic 
classification by 80 different types of communications 
protocols (HTTP, AAC, UDP, F4V, etc.). The protocols 
arranged in columns. Each table row is the amount of traffic per 
hour. (Each table is a different continent, each column in the 
table is a different protocol, each line is the amount of traffic at 
a given time. 

 

Figure 12: PCs are trained on N. America Protocols Explained 
variance: PC1=81%, PC2=13% 
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In Figure 12 PCs trained on N. America protocol as normal 
datasets (vector of 80 dimensions). After the PCA 
transformation, two eigenvalues in the training set can explain 
most of the variance (Explained variance: 84%,13%).  From the 
two eigenvectors belonging to the most explanatory 
eigenvalues, we extracted, once again, the eigenvectors 
components with the highest weights. The protocols that 
multiplied during the PCA transformation with those most 
upper weights are the most dominant protocol in the North 
American continent -  the top 5 features of PC1 are 
HTTP.Other, Image.WebP, HTTPS.Web Messaging, and 
Torrent. 

Table 4:  Summary of PCA geographical projections 

 

The summary of the results of the PCA transformation of 
the cellular network transportation, in favor of the geographical 
investigation, by the cross-domain and by the cross-protocol 
queries, is summarized in Table 5. 

Table 5:  Summary of PCA geographical projections 

 

V. RELIABILITY AND VALIDITY  

The t-tests have used for verifying the accuracies. Statistical 
analyses are used to conclude if the accuracies taken with the 
proposed approach are significantly distinct from the others 
(whereas both the distribution of values were normal). The test 
for assessing whether the data come from normal distributions 
with unknown, but equal, variances is the Lilliefors test. 
Obtaining results by comparing the results produced by 100 
trials (at each trial we used a different split of the data). 
Obtaining a test decision for the null hypothesis that the data 
comes from independent random samples from normal 
distributions with equal means and equal but unknown 
variances. Results show a statistical significant effect in 
performance (p-value < 0.05, Lilliefors test H=0). 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this article, we convert the unsupervised learning 
problem into a supervised classification problem. We proposed 
four methods for creating an associative anomaly within a given 
commercial traffic data database.  We demonstrated how, using 
the PCA algorithm, we can detect the network anomaly 
behavior and classify between a regular data stream and a data 
stream that deviates from a routine, at the IP network layer 
level. The experiments we performed showed high and stable 
results, for example, it obtained that the detection and coloring 
of the time-period anomaly was PD = 90.2% and PF = 0.5%. 
and PD = 89.9% and PF = 1.5% for the detection of a 
geographical domains anomaly. Similar results obtained for the 
detection of anomalies in traffic congestions and for the 
geographical protocols anomalies. 

The next direction that this study can take is the usage of 
advanced time series tools such as Facebook's Prophet tool. 
With time series tools, we expect to find trends and cycles in 
the dataset that will enable us to make an expectation forecast 
graph that any deviation from a predefined threshold around the 
forecasting graph will be defined as an anomaly. 
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